EXERCICE 1C.1

Substituer à \mathscr{L} sa valeur pour calculer le périmètre d'un carré de côté \mathscr{L} :

	\mathcal{L}	$\mathcal{P} = 4 \times \mathcal{L}$	Résultat
a.	5 cm	<i>𝒯</i> = 4 × 5	<i>𝒯=</i> 20 cm
b.	3 cm	$\mathscr{P}=$	$\mathcal{P}=$
c.	9 cm	$\mathcal{P}=$	$\mathcal{P}=$
d.	4 cm	$\mathscr{P}=$	$\mathcal{P}=$
e.	2,5 cm	$\mathscr{P}=$	$\mathcal{P}=$
f.	10 cm	$\mathscr{P}=$	$\mathcal{P}=$
g.	100 mm	$\mathcal{P}=$	$\mathcal{P}=$
h.	500 m	$\mathscr{P}=$	$\mathcal{P}=$
i.	3,2 cm	$\mathscr{P}=$	$\mathscr{P}=$
j.	8,7 cm	$\mathscr{P}=$	$\mathcal{P}=$

EXERCICE 1C.2

a. ABCD est un carré de côté 7,5 cm. Quel est son périmètre ?

b. EFGH est un carré de périmètre 40 cm. Quelle est la longueur d'un de ses côtés ?

c. IJKL est un carré de périmètre 32 cm. Quelle est la longueur d'un de ses côtés ?

d. PQRS est un carré de périmètre 14 cm. Quelle est la longueur d'un de ses côtés ?

.....

EXERCICE 1C.3

Substituer à $\mathscr L$ et ℓ leurs valeurs pour calculer le périmètre d'un rectangle de longueur $\mathscr L$ et de largeur ℓ :

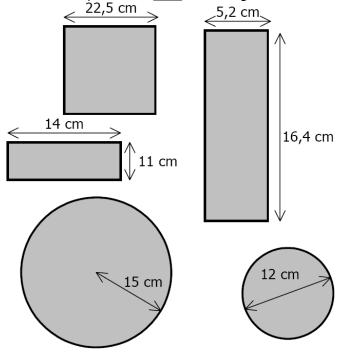
	urgeur / r			
	\mathscr{L}	l	$\mathcal{P}=2\times(\mathcal{L}+1)$	Résultat
a.	5 cm	4 cm	<i>𝒯=</i> 2×(5+4)	<i>𝒯 =</i> 18 cm
b.	3 cm	2 cm	$\mathscr{P}=$	$\mathscr{P}=$
c.	8 cm	1 cm	$\mathscr{P}=$	$\mathscr{P}=$
d.	9 cm	8 cm	$\mathscr{P}=$	$\mathscr{P}=$
e.	5,5 cm	4,5 cm	$\mathscr{P}=$	$\mathscr{P}=$
f.	6,5 cm	3 cm	$\mathscr{P}=$	$\mathscr{P}=$
g.	14 m	12 m	$\mathscr{P}=$	$\mathscr{P}=$
h.	120 cm	1 m	$\mathscr{P}=$	$\mathscr{P}=$
i.	123 mm	12,2 cm	$\mathscr{P}=$	$\mathscr{P}=$
j.	1 m	1 cm	$\mathscr{P}=$	$\mathscr{P}=$

EXERCICE 1C.4

a. Un champ mesure 156 m de long pour 124 m de large. Combien de mètres de clôture faudrait-il pour l'entourer complètement ?

b. Avec 360 m de clôture, on pourrait faire le tour d'un champ carré. Quelle serait alors la mesure du côté de ce carré?

c. Quel champ nécessite la plus longue cloture: un champ carré de 30 m de côté ou un champ rectangulaire de 50 m de long sur 10 m de large ?


EXERCICE 1C.5

Substituer à \mathcal{R} sa valeur pour calculer la longueur d'un cercle de rayon \mathcal{R} ou de diamètre \mathcal{A} :

	R	$\mathcal{P} = 2 \times \pi \times \mathcal{R}$	Résultat
a.	5 cm	$\mathscr{P} = 2 \times \pi \times 5$	<i>P</i> ≈ 31,4 cm
b.	3 cm	$\mathscr{P}=$	P≈
c.	9 cm	$\mathscr{P}=$	$\mathscr{P} \approx$
d.	4 mm	$\mathscr{P}=$	$\mathscr{P} \approx$
e.	2,5 cm	$\mathscr{P}=$	$\mathscr{P} \approx$
	D	$\mathscr{P} = \pi \times d$	Résultat
f.			Résultat \mathscr{P}_{pprox} 31,4 cm
f. g.			
	10 cm	$\mathscr{P}=\pi \times 10$	ூ≈ 31,4 cm
g.	10 cm 15 cm	$\mathcal{P} = \pi \times 10$ $\mathcal{P} =$	ூ≈ 31,4 cm ூ≈

EXERCICE 1C.6

Calculer le périmètre <u>réel</u> de ces figures:

CORRIGE – M. QUET

Exercice 1 : Périmètre d'un carré

Longueur L	Périmètre : 4×L	Résultat
5 cm	$\mathbf{P} = 4 \times 5$	P = 20 cm
3 cm	$\mathbf{P} = 4 \times 3$	P = 12 cm
9 cm	$\mathbf{P} = 4 \times 9$	P = 36 cm
4 cm	$P = 4 \times 4$	P = 16 cm
2,5 cm	$P = 4 \times 2,5$	P = 10 cm
10 cm	$\mathbf{P} = 4 \times 10$	P = 40 cm
100 mm	$P = 4 \times 100$	P = 400 mm
500 m	$P = 4 \times 500$	P = 2 000 m
3,2 cm	$P = 4 \times 3,2$	P = 12,8 cm
8,7 cm	$\mathbf{P} = 4 \times 8,7$	P = 34,8 cm

Exercice 2 : Périmètre d'un carré

- a. $P = 4 \times 7.5 = 30$ cm.
- b. Le périmètre mesure 40 cm. Chaque côté mesure $\mathbf{c} = \mathbf{P} \div \mathbf{4} = \mathbf{40} \div \mathbf{4} = \mathbf{10}$ cm.
- c. Le périmètre mesure 32 cm. Chaque côté mesure $\mathbf{c} = \mathbf{P} \div \mathbf{4} = \mathbf{32} \div \mathbf{4} = \mathbf{8} \text{ cm}$.
- d. Le périmètre mesure 14 cm. Chaque côté mesure $\mathbf{c} = \mathbf{P} \div \mathbf{4} = \mathbf{14} \div \mathbf{4} = \mathbf{3.5}$ cm.

Exercice 3 : Périmètre d'un rectangle

Longueur et largeur doivent être dans la même unité de longueur.

Longueur	Largeur	Périmètre	Résultat
L	1	$P = 2 \times (L + 1)$	
5 cm	4 cm	$P = 2 \times (5+4)$	P = 18 cm
3 cm	2 cm	$P = 2 \times (3+2)$	P = 10 cm
8 cm	1 cm	$P = 2 \times (8+1)$	P = 18 cm
9 cm	8 cm	$P = 2 \times (9+8)$	P = 34 cm
5,5 cm	4,5 cm	2×(5,5+4,5)	P = 20 cm
6,5 cm	3 cm	$P = 2 \times (6,5+3)$	P = 19 cm
14 m	12 m	$P = 2 \times (14 + 12)$	P = 52 m
120 cm	1 m	$P = 2 \times (1,2+1)$	P = 4.4 m
123 mm	12,2 cm	2×(123+122)	490 mm
1 m	1 cm	$P = 2 \times (100 + 1)$	202 cm

Exercice 4:

a. Le champ est supposé rectangulaire.

Périmètre :
$$P = 2 \times (L+1) = 2 \times (156+124) = 560 \text{ m}$$
.

b. Périmètre d'un carré : $P = 4 \times c$

Mesure d'un côté:
$$c = P \div 4 = 360 \div 4 = 90 \text{ m}$$

c. Périmètre du carré : $P = 4 \times c = 4 \times 30 = 120 \text{ m}$ Périmètre du rectangle :

$$P = 2 \times (L + l) = 2 \times (50 + l0) = 120 \text{ m}$$

Exercice 5 : Périmètre d'un disque

Rayon R	Périmètre : $2 \times \pi \times R$	Résultat
5 cm	$\mathbf{P} = 2 \times \pi \times 5$	P ≈ 31,4 cm
3 cm	$P = 2 \times \pi \times 3$	P ≈ 18,8 cm
9 cm	$P = 2 \times \pi \times 9$	P ≈ 56,5 cm
4 mm	$P = 2 \times \pi \times 4$	P ≈ 25,1 mm
2,5 cm	$P = 2 \times \pi \times 2,5$	P ≈ 15,7 cm

Diamètre D	Périmètre : $D \times \pi$	Résultat
10 cm	$P = 10 \times \pi$	P ≈ 31,4 cm
15 cm	$P = 15 \times \pi$	P ≈ 47,1 cm
500 m	$P = 500 \times \pi$	$P \approx 1570,8 \text{ m}$
3,2 cm	$P = 3,2 \times \pi$	P ≈ 10,1 cm
8,5 mm	$P = 8.5 \times \pi$	P ≈ 26,7 mm

Exercice 6 : Périmètres

Périmètre du carré : $P = 4 \times c = 4 \times 22,5 = 90 \text{ cm}$

Périmètre du premier rectangle :

$$P = 2 \times (L+1) = 2 \times (16,4+5,2) = 43,2 \text{ cm}$$

Périmètre du deuxième rectangle :

$$P = 2 \times (L+1) = 2 \times (16,4+5,2) = 43,2 \text{ cm}$$

Périmètre du premier cercle :

$$P = 2 \times \pi \times R = 2 \times \pi \times 15 \approx 94.2 \text{ cm}$$

Périmètre du deuxième cercle :

$$P = D \times \pi = 12 \times \pi \approx 37.7$$
 cm